翻訳と辞書
Words near each other
・ Geometry (disambiguation)
・ Geometry (Ivo Perelman album)
・ Geometry (Jega album)
・ Geometry (Robert Rich album)
・ Geometry and topology
・ Geometry Dash
・ Geometry Expert
・ Geometry Festival
・ Geometry from the Land of the Incas
・ Geometry index
・ Geometry instancing
・ Geometry of binary search trees
・ Geometry of Fear
・ Geometry of interaction
・ Geometry of Love
Geometry of numbers
・ Geometry of roots of real polynomials
・ Geometry pipelines
・ Geometry prize
・ Geometry processing
・ Geometry Wars
・ Geomicrobiology
・ Geomipmapping
・ Geomitra
・ Geomitra delphinuloides
・ Geomitra grabhami
・ Geomitra moniziana
・ Geomitra tiarella
・ Geomium
・ Geommasan


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Geometry of numbers : ウィキペディア英語版
Geometry of numbers
In number theory, the geometry of numbers studies convex bodies and integer vectors in n-dimensional space.〔MSC classification, 2010, available at http://www.ams.org/msc/msc2010.html, Classification 11HXX.〕 The geometry of numbers was initiated by .
The geometry of numbers has a close relationship with other fields of mathematics, especially functional analysis and Diophantine approximation, the problem of finding rational numbers that approximate an irrational quantity.〔Schmidt's books. Grötschel et alia, Lovász et alia, Lovász.〕
==Minkowski's results==
(詳細はlattice in ''n''-dimensional Euclidean space R''n'' and ''K'' is a convex centrally symmetric body.
Minkowski's theorem, sometimes called Minkowski's first theorem, states that if \mathrm (K)>2^n \mathrm (\mathbb^n/\Gamma), then ''K'' contains a nonzero vector in Γ.
(詳細はinf of the numbers λ such that λ''K'' contains ''k'' linearly independent vectors of Γ.
Minkowski's theorem on successive minima, sometimes called Minkowski's second theorem, is a strengthening of his first theorem and states that〔Cassels (1971) p.203〕
:\lambda_1\lambda_2\cdots\lambda_n \mathrm (K)\le 2^n \mathrm (\mathbb^n/\Gamma).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Geometry of numbers」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.